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ABSTRACT 

We de te rmine  the  absolute  Galois group of a countable  Hilbert ian P(seudo)  

R(eal)  C(losed) field P of character is t ic  0. Th i s  group t u rn s  o f t  to be real- 

free, de t e rmined  up to i somorph ism by the  topological space of orderings 

of P .  Examples  of such fields P are the  proper  finite ex tens ions  of the  field 

of  all total ly real numbers .  

I n t r o d u c t i o n  

All fields occurring in this paper are assumed to have characteristic 0. A field 

P is called P(seudo)A(lgebraically)C(losed) if every (non-empty) absolutely irre- 

ducible variety V defined over P has a P-rational point. In [FV2] it was shown 

that over a Hilbertian PAC-field, all finite embedding problems are solvable. 

Thus, the absolute Galois group of a countable Hilbertian PAC-field is the free 

profinite group of countably infinite rank. Now we generalize this result to the 
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larger class of P(seudo)R(eal)C(losed) fields P. These are defined by the prop- 

erty that every non-singular absolutely irreducible variety V defined over P has 

a P-rational point if it has a point over each real closure of P. Our main result 

says that  all restricted finite embedding problems over a Hilbertian PRC-field (of 

characteristic 0) are solvable. This is the main step in proving that  the absolute 

Galois group of such a field is real-free (in the sense of [HJ2]), determined up to 

isomorphism by the topological space of orderings of the field (see Corollary 1). 

Pop [P] has recently shown that the field Q~e of all totally real algebraic num- 

bers is PRC. Then any finite extension K of Q~e is PRC [Pr, Th. (3.1)]. Since Q~e 

is a Galois extension of Q, any finite proper extension K of Q~ is also Hilbertian 

(by Weissauer's theorem ITs] or [FrJ], Cor. 12.15]). Thus, G(Q/K) is real-free 

by the results of this paper. Actually, there are exactly two possible isomorphism 

types for these groups G(Q/K) (Corollary 2). The latter is an observation of M. 

Jarden. 

ACKNOWLEDGEMENT: We thank D. Haran and M. Jarden for helpful discus- 

sions. 

Comments on PRC [ields: PRC-fields were introduced by Prestel [Pr]. The 

absolute Galois group of a PRC-field is real-projective in the sense of [H J1]. 

Conversely, each real-projective profinite group is the absolute Galois group of 

a PRC-field by [H J1]. On the other hand, for any real closed field R, R(x) has 

real-projective (even real-free) absolute Galois group, but it is not PRC. | 

Notations: As above, we assume all occurring fields to have characteristic 0. 

Denote the algebraic closure of a field k by k. The absolute Galois group G(k/k) 
of k is denoted by Gk. The semi-direct product of groups A and B is written 

as A • (where A is normal). The normalizer (resp., centralizer) of A in B is 

denoted NB(A) (resp., CB(A)). An involution is an element of order 2. Other 

notations as introduced above. | 

1. Rea l  points  on  H u r w i t z  spaces  

We recall the set-up of [FV1, w Let G be a fni te  group, let Aut(G) be its 

automorphism group and let Inn(G) be the group of inner automorphisms. 

1.1 THE HURWITZ MONODROMY GROUP. Fix an integer r > 3. We let b/~ be 

the space of all subsets of cardinality r of the Riemann sphere p1 = C U {c~}. 
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We choose a base point b -- {bl , . . . ,  by} E/4., where b~ -- i -{- (r - 2u + i)i (and 

i 2 -- - I ) .  The important property is that the complex conjugate of by is b~-v+l 

for l < u < r / 2 .  

The space b/~ has a natural structure of algebraic variety defined over Q [FV1, 

w So, the above base point b is rational over Q. For the moment, we view 

b/~ only as a complex manifold. Its fundamental group 7rl(L/~, b), based at b, 

is the Hurwitz monodromy group H~, which has classical e l e m e n t a r y  b ra id  

generators Q1 , . . . ,  Qr-1 [FVI,w 

1.2 MODULI SPACES FOR COVERS OF THE RIEMANN SPHERE. Consider covers 

X: X --+ F1 of compact (connected) Riemann surfaces. Two covers X: X --* p1 

and X': X / ~  p1 are equ iva len t  if there exists an isomorphism e: X --* X / with 

X'e = X. Let Aut (X/P  1) be the group of automorphisms e of X with Xe = X. We 

call X a Galois cover if Aut (X/P  1) is transitive on the fibers of X. From now on X 

will be a Galois cover. All but finitely many points of ]p1 have the same number 

of inverse images under X. These exceptional points are the b r a n c h  po in t s  of 

X- 
Let 7-/;b(G) be the set of equivalence classes IX[ of all Galois covers X: X 

p1 with r branch points and with Aut (X/P  1) ~ G. Let 7-/~"(G) be the set of 

equivalence classes of pairs (X, h) where X: X --* p1 is a Galois cover with r 

branch points, and h: Aut (X/F  1) ~ G is an isomorphism. Two such pairs 

(X, h) and (X': X'  --~ ]~1, h')  are called equ iva len t  iff there is an isomorphism 

6 : X  ~ X'  w i t h x ' 6  = X and h'ce = h. Herece: Aut (X/~  1) ~ Au t (X ' /P  1) 

is the isomorphism induced by 6 (i.e., c e ( A )  = 5 A 5 - 1 ) .  Let Ix, hi denote the 

equivalence class of the pair (X, h). Let A: 7-/~" (G) --* 7-/; s (G) be the map sending 

IX, hi to IXI- 

Define the maps ~: K;b(G) --* bt~ and ~':  7-/~~ --*/g~ by sending Ixl and 

IX, hi, respectively, to the set of branch points of X- The sets 7-/;S(G) and 7-/~~ (G) 

carry a natural topology [FV1, w such that  $ and q2' are (unramified) cov- 

erings. Then also A: 7-/~~ ~ 7-/;b(G) is a covering, and ~' o A = ~ ' .  Note 

that  through these coverings the spaces 7-/;~(G) and 7-/~"(G) inherit a structure 

of complex manifold from b/~. 

To determine the equivalence class of the covering ~, we need to identify the 

natural permutation representation of H~ = 7r1 (H~, b) on the fiber ~ -  a (b). (Here 

b is our fixed base point in/g~.) Recall that this action is defined as follows: Each 

closed path w in bt, based at b sends a point p E ~-~(b)  to the endpoint of the 
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unique lift of w with initial point p. Similarly for ~ n  (G). 

This depends on the choice of generators "Y1,..., ~/~ for the fundamental group 

F = ~rl(P 1"- b,0). (By abuse, we identify the paths "yj and their homotopy 

classes.) Let ~/j be a path that goes on a straight line (in the complex plane) 

from 0 towards bj, then travels on a small circle in clockwise direction around bj, 

and returns on the straight line to 0. (The small circles must be disjoint). Then 

F is a free group on generators ~/1,... , '~-1,  and "Yl"" "~/~ = 1. We can arrange 

things such that  the complex conjugate of "yj is "yT_lj+l for j = 1 , . . . ,  r/2 (since 

the corresponding relation holds for the bj's). 

Now let X: X ~ p1 be a (Galois) cover of p1 with IXI E ~-~(b) .  This 

means A u t ( X / ?  1) -~ G, and bl , . . . ,b~ are the branch points of X. Thus X 

restricts to an unramified cover of the punctured sphere p1 \ b. By the the- 

ory of covering spaces, the latter corresponds to a normal subgroup U x of F = 

7rl(]~ 1 \  b, 0), and F/U x is isomorphic to Aut(X/p1). Thus there is a surjec- 

tion f :  F --* G with kernel U x. The surjection f is determined by the r-tuple 

( a l , . . . , a ~ )  = (f( '~l) , . . . , f (~/r)) .  This r-tuple ( c l , . . . , a ~ )  has the following 

properties: a l ' " a r  = 1, the group G is generated by a l , . . . ,  a~, and aj r 1 for 

all j .  The last condition means that  the cover X is actually ramified over each bj 

[FV1, w Let s denote the set of these r-tuples ( a l , . . . ,  c~). 

Each tuple ( a l , . . . ,  a~) E g~ occurs for some X. Another choice of f (for the 

same or equivalent X) results in an r-tuple conjugate to ( a l , . . . , a ~ )  under an 

element of Aut(G). Since f determines U x = ker(f),  hence IX[ uniquely, we get 

the following. The above gives a bijection between the points [Xl in the fiber 

�9 - l (b )  and the set g~b ~g , /Au t (G)  of Aut(G)-classes of the tuples ( a l , . . . ,  ~r~). 

Via this bijection, H~ = 7rl(/g~,b)= (Q1,. . . ,Q~-I)  acts on s For a suitable 

choice of the generators Q1,- .- ,  Q~-I this action is given by the following rule 

[FV1, w The element Qj sends the class of ( a l , . . . ,  ~ )  to the class of 

(1) (O '1 , . . . ,  O'j+l,  aj~lO'jGrj+l,...,~Tr) 

(This observation goes back to Clebsch and Hurwitz). 

Similarly, we get a bijection between the points IX, hi in the fiber (~ ' ) - l ( b )  and 

the set g~n ~fgr/Inn(G). Here one has to observe additionally that  if X: X ~ p1 

is a Galois cover with branch points b l , . . . ,  b~ as above, then there is a surjection 

L: F ~ Aut (X/P  1) with kernel U• that is canonical up to composition with 

inner automorphisms: Fix a point Y0 E X-l(0). For each path ~/representing an 
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element of F, let y be the endpoint of the unique lift of 3' to X ". X-l(b)  with 

initial point Yo. Then, ~ sends 3' to the unique element e of Aut(X/l? 1) with 

e(y) = Yo. Varying Yo over ~:-1(0) means composing ~ with inner automorphisms 

of Aut(X/p1). Now set f -- h~, and associate to IX, hi the Inn(G)-class of the 

tuple ( a l , . . . ,  at)  = ( f (71) , . . . ,  f (%)) .  This yields the desired bijection between 

(k~')-l(b) and E~". The resulting action of Hr on E~" is again given by formula 

(1) [FV1, w 

1.3 THE ALGEBRAIC STRUCTURE OF THE MODULI SPACES. Consider a cover 

X: X --+ 1P 1 as above. The space X has a unique structure of algebraic variety 

defined over C (compatible with its analytic structure) such that ;~ becomes an 

algebraic morphism (Riemann's existence theorem). Thus, for each (not neces- 

sarily continuous) automorphism/3 of C, we can consider the cover X~: X z --+ I? 1 

obtained from X: X --+ ~1 through base change with/3. 

By the main result of [FV1], the spaces ~ b ( G )  and ~7(G)  have a structure 

of (reducible) algebraic variety defined over Q (compatible with their natural 

analytic structure) such that vl,, ~ '  and A are morphisms defined over Q. Also, 

each automorphism/3 of C sends the point IXI E ?-/~b(G) to Ixol. Further, /3 

sends the point Ix, h I C ~ " ( G )  to {;~e,h o/3-11, where X: X -+ p1 and h: 

Aut (X/P  1) -+ G as usual, and h o/3-1: Aut(Xe/~l) --+ G is the isomorphism 

that maps a n to h(a) for every a E Aut(X/P1). With these conditions the Q- 

structures on these spaces are unique. 

In particular, we get an action of the absolute Galois group GQ on the fibers 

�9 - l (b )  and (~ ' ) - l (b ) .  Via the above bijections, this gives an action on Et b and 

on s We need the following fact. 

(2) Complex conjugation c acts on s and on C~ ~ by sending the class of 

( a l , . . . ,  at)  to the class of (o'rl,..., all). 
It suffices to prove the following statement. If IX, hi E (~ ' ) - l (b )  corresponds 

to the class of ( a l , . . . , a ~ )  in C) ", then {X ~, h o c{ corresponds to the class of 

(a~-l , . . . ,  a11). This is a straightforward consequence of the definitions, and of 

the formula c(~/j) = 7~-2j+1 (j = 1 , . . .  , r /2)  from w (cf. [DeFr, Lemma 2.1]). 

1.4 CHOOSING SUITABLE COMPONENTS OF THE MODULI SPACES. Fix an integer 

s > 4 divisible by 4. Let r be the product of s with the number of conjugacy 

classes ~ {1} of G. Let s be the set of all r-tuples (a~ , . . . ,  a~) C s satisfying 

this: For each conjugacy class C ~ {1} of G there are exactly s indices j such 
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that aj e C. Further, let $(:) (resp., e,(~ )) be the image o r e  (s) in s (resp., $~n). 

The sets E(~ ) and C(~ ) are invariant under the action of the Hurwitz group H~ 

(via formula (1)). For the rest of w assume the Schur multiplier of G is gen- 

erated by commutators [FV1, w By a theorem of Conway and Parker [FV1, 

Appendix], this implies that H~ acts transitively on C!: ) and s for suitably 

large s. From now on we assume s has been chosen such that this holds. 

By the theory of covering spaces, the connected components of 7/~b (G) (resp., 

7/~(G)) are in 1-1 correspondence with the orbits of H~ on the fiber ~ - l ( b )  

(resp., (~ ' ) - l ( b ) ) .  The set ~!:) (resp., E~ )) yields such an orbit (through the 

identifications in w Let 7/ (resp., 7-/-/') denote the corresponding component 

of 7/;b(G) (resp., 7-/~'(G)). We call these spaces H u r w i t z  spaces .  By [FV1, 

Thm. 1], 7/ and 7-//' are absolutely irreducible components, defined over Q, of 

7/;b(G) and 7/~"(G), respectively. From now on we work only with 7-/and 7-/'. 

Let ~: 7-/--*/4~ and ~':  7-/' ~ /4~  denote the restriction of the original maps. 

Thus ~: 7 - /~  b/~ is a connected covering, and the fiber ~ - l ( b )  is identified with 

the set E(~ ). A similar statement holds for 7/'. We get the sequence of coverings 

t A @ 7-/--,7-/ ,U~ 

where A restricts to the natural map ~i~ ) r(s) ~.b on the fibers over b. 

For A E Aut(G), let/fA: 7/' ~ 7/' send the point IX, hi to IX, A o h I. Then ~A is 
an automorphism of the covering A: 7-/' --* 7-/. It depends only on the class of A 

modulo Inn(G). In fact, A is a Galois covering, and A~-*/fA induces an isomor- 

phism from O u t ( G ) =  Aut(G)/Inn(G) to Aut(7/t/7/) [FV1, w Furthermore, 

5A is a morphism defined over Q [FV1, w 

Identify the fiber ( ~ ' ) - l ( b )  with C~ ~ as above. This yields an action of the 

maps 6A on ~" .  Thereby, ~A sends the class of ( a l , . . .  ,a~) to the class of 

(A(a l ) , . . . ,  A(a~)). (Clear from the definitions). 

1.5 MORE ABOUT COMPLEX CONJUGATION c. The following observation is 

crucial in the proof of the main theorem. 

(3) For each A e Aut(G) with A 2 = 1 there is (~-rational point q E 7-/' lying 

over b such that c(q) = ~A (q). 

Recall the choice of r and s from w Choose a l , . . .  ,a~/2 such that for each 

conjugacy class C r {1} of G there are exactly s/2 indices j e {1 , . . . ,  r/2} with 

a j  E C. Arrange additionally that ai . . .a~/u  = 1: take a2 = a~ -1, a4 = a31 
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etc. This is possible since s is divisible by 4. Then set a t - j+1 = A(a~ 1) for 

j = 1 , . . . ,  r/2. This yields an r-tuple ( a l , . . . ,  a t )  in E (s) such that (a~-l , . . . ,  a~ -1) 

is the A-conjugate of ( a l , . . . ,  a~). By (2) and the action of 5A on s (w we 

can take q to be the point corresponding to ( a l , . . . ,  a~). 

Remark: Serre [Se2, p. 92] uses the same construction of the tuple ( a l , . . . ,  at)  

for A = 1 to obtain regular extensions of R(t). We adopted the choice of the bjs 

from there. | 

2. T h e  e m b e d d i n g  p r o b l e m  over  a H i l b e r t i a n  PRC- f i e ld  

We proceed similarly as in our paper on PAC-fields [FV2, section 1]. Here, 

however, there are places that require additional arguments. 

LEMMA 1: Let 7-I t --* 7-l be an unramified Galois covering of absolutely irre- 

ducible, non-singular varieties defined over a PRC-field P of characteristic O. 

Assume all automorphisms of the cover are defined over P. Let ~: Gp ---* 

Aut(7-/~/7-/) be a homomorphism such that for each involution I E Gp there 

is a P-point  q E ~ '  with I(q) = ~(I)(q).  Then there exists a P-rational point p 

of ~ and a point p' E 7-t j lying over p with the following property: P(p') is the 

fixed field ofker(f~), and the Gp-orbit of p t coincides with the ~(Gp)-orbit  of p'. 

Proof: We modify the proof of [FV2, Lemma 1]. View ~ as a 1-cocycle of Gp 

in Aut(7-/~). Such a cocycle defines a twisted form 7-/" of 7/~ over P (via Galois 

cohomology, see [Sel, Ch.III, Prop.5]). Identify the P-points of 7-/" and of the 

original variety 7"/~. Then the twisted form defines a new action of Gp on these 

/5_points pt. If the old action of g e Gp sends p~ to gp~, then the new action 

sends p' to g/3(g)~. 

Consider an involution I in Gp. The fixed field R in /5  of I is a real closure 

of P. The point q with I(q) = 13(I)(q) is an R-rational point of 7-/" (since 

G ( P / R )  = (I)). Thus 7-/" has a point over each real closure of P. Since P is 

PRC (and 7-/" is non-singular), 7/" has a P-rational point p~. The remainder of 

the proof is as in [FV2, Lemma 1]: The fact that  p~ is a P-rational point of 7-/" 

means that gp' = 13(g)-lp ~ for all g E Gp. Since t3(g) E Aut(7-/'/7-/), the image 

p of p' in 7-/is rational over P. The rest of the claim is clear. | 

The following group-theoretic Lemma overcomes some complications in the 

PRC-case. We thank D. Haran for supplying the present version of this Lemma 

(improved from the original version). 
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LEMMA 2: Let H be a finite group, and G a normal subgroup. Then there exists 

a surjection f: [-I -* H of finite groups such that for G = f - l ( G )  the following 

holds: CH(G) = 1, and the Schur multiplier of G is generated by commutators. 

Further, each involution in H \ G lifts to an involution in [t. 

Proo~ Choose a presentation 1 -~ Tr ~ Z- --+ H --+ 1, where Z- is the free 

product of a free group of finite rank with finitely many groups of order 2, say 

(51), �9 �9 (6e), such that 61 , . . . ,  6e map onto the involutions in H \ G. The inverse 

image .71 of G in .7 contains no conjugates of ~b - - - ,  6e. Hence, by the Kurosh 

Subgroup Theorem it is a free group of finite rank. Let A / =  [7"1, T~] be the group 

generated by commutators [f, r] with ] E .71, r E 7r Set F = .7/Af, F1 = .71/H, 

and R = 7r Then 1 --* R --+ F1 --* G --* 1 is a central extension. 

By the general theory of the Schur multiplier [Hu, Kap.5, w R is the direct 

product of the Schur multiplier M(G)  = R M (F1) ~ and a free abelian group A. 

Let A0 be the intersection of all the F-conjugates of A. Then Ao ,~ F. Since 

[R :  A] = [M(G)[ < oc, also [ F :  A0] < c~. Set / t  = F/Ao,  G = F1/Ao, and 

S = R/Ao.  Clearly, each involution in H \ G lifts to an involution i n / t .  Note 

that  S is the direct product of S N (G)~ ~ M(G) and A/Ao.  

STEP 1: The Schur multiplier M = M(G) is generated by commutators.. 

This is similar to the proof of [FV1, Lemma 1]. Let D be a representation 

group of G. Then there is a central extension 

1---~ M --, D ~ G---* I 

such that  M lies in the commutator subgroup D ~ of D. Let L be the subgroup 

of M generated by commutators from D that fall into M. Set M = M / L ,  D = 

D/L .  Then we have the central extension 

where M <_ (/)) ' .  Furthermore, M contains no non-trivial commutators from D. 

Let T be the inverse image of S in D under the m a p / )  ~ G. Since S is central 

in G, we have [T,/)] <_/t:/. Hence [T,/)] = 1. Thus the sequence 

I ~ T ~ D ~ G ~ I  

is also a central extension. This implies that I T N (/))'1 -< ]M(G)] (see the proof 

of [Hu, Kap.3, Satz 23.5]). 
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On the other hand, T n ( D ) '  contains the inverse image i n / )  of Sn(G) '  - M(G)  

(since h~/ C (D)'); thus JT n (D)'[ _> JM(G)J. JAT/J. Hence /V/ = 1, and so 

M(G) = M = L is generated by commutators. This completes Step 1. 

STEP 2: Let T be a non-abelian finite simple group with trivial Schur multiplier. 

(For example, T = SL2(8) [Hu, Satz 25.7].) Form the regular wreath product [-I 

of [-I with T [Ha, Des 15.6]. Thus [1 = T j xS[-I, with j = J/tJ, and [-I acts on T j 

by permuting the factors in its regular representation. Define f:  I:I --, H as the 

composition of projection I:I ~ [-I followed by the natural map [I ~ H. Then 

the properties required in the Lemma hold. 

We have T j contained in G = f - l ( G ) .  Clearly, CfI(TJ ) = 1, hence also 

Cf/(G) -- 1. It is also clear that each involution in H \ G lifts to an involution 

in/-7/(because this is true for/~).  

Any central extension of T splits because T is perfect and M ( T )  = 1. Thus 

every central extension of T j splits. This implies that every representation group 

of G has a normal subgroup isomorphic to T j such that the quotient by this 

subgroup is a representation group of G. Therefore, M(G) ~ M(G) is generated 

by commutators. | 

PROPOSITION 1: Let P be a PRC-field (of characteristic 0). Let H be a finite 

group and G a normal subgroup. Suppose j3: Gp --* H / G  is a surjection such 

that for every involution I E Gp there exists an element in H of order _~ 2 whose 

image in H / G  equals j3(I). Let P'  be the fixed field of ker(~). Then we have: 

(a) There exists a Galois extension L of P(x)  containing P' and regular over P',  

such that there is an isomorphism G ( L / P ( x ) )  --* H sending G ( L / P ' ( x ) )  to G. 

(b) I f  P is Hilbertian, then there exists a Galois extension P ' / P  containing Pr 

such that there is an isomorphism G( P"  / P ) --* H sending G( P"  / P t) to G. 

Proof." Claim (b) follows from (a): If P is Hilbertian, we obtain the desired 

extension P ' / P  by specializing the extension L/P (x ) .  It remains to prove (a). 

PART 1: Reduction to the case that CH(G) = 1 and M(G)  is generated by 

commutators. Let f : /7/ ~ H and G = f - l ( G )  be as in Lemma 2. Then 

[ I /G  ~- H / G  canonically. Suppose the conclusion of the Proposition holds for 

/7/ in place of H and G in place of G. Then we can embed P '  into a Galois 

extension K / P ( x )  with an isomorphism G ( K / P ( x ) )  ~ [t  sending G ( K / P ' ( x ) )  

to G. The subfield of K corresponding to the kernel of f : [ / ~  H is the desired 
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L. This completes the reduction to the special case that CH(G) = 1 and M(G) 
is generated by commutators. Assume from now on that these conditions hold. 

PART 2: Application o[ [FV1]. Now we use the results of w There we con- 

structed the unramified Galois cover A: 7-{' --* ~ of absolutely irreducible non- 

singular varieties defined over Q. Recall that all automorphisms of this cover are 

defined over Q, and are of the form 6A, A E Aut(G). 

Proposition 3 of [FV1] yields the following facts. For each point p E 7q, rational 

over some field k, and for each point p' E 7-/' lying over p, there is a Galois 

extension L/k'(x), regular over k' = k(p'), with the following properties: L is 

Galois over k(x), and there is an isomorphism h from G(L/k(x)) to the group A 

of all A E Aut(G) for which 6A (P') is conjugate to p' under G(k'/k). Furthermore, 

h restricts to an isomorphism between G(L/k'(x)) and Inn(G). (Note: k'/k is 

Galois because all automorphisms of the Galois covering A are defined over Q). 

Now assume k = P is a PRC-field. Consider the given Galois extension P' /P 
with group isomorphic to G/H. Since CH(G) -- 1, we can view H as a subgroup 

of Aut(G) (via conjugation action). Then H/G is a subgroup of Out(G). Hence 

it is isomorphic to a subgroup F of Aut(7-/'/7-/), via the map A ~ 6A. The 

composition of the given map/3: Gp --* H/G with the map H/G ~- F yields a 

homomorphism ~: Gp ---* Aut(7-/'/7-/). Part  3 below shows that  the hypothesis on 

the/3(I )  from Lemma 1 holds. Thus we can choose p and p' so that P(p') = P', 
and the Gp-orbit  of p' equals the F-orbit  of p'. 

For the associated Galois extension L/P(x), it follows that G(L/P(x)) is iso- 

morphic to the group A of all A E Aut(G) for which 6A(p') is conjugate to p' 

under G(P'/P). Since Gp. pl _ F .  ~/, we get 

A = {A E Aut(G): ~A(p I) e F .pl} = (A E Aut(G): 6A e F} = H. 

Thus G(L/P(x)) is isomorphic to H, under an isomorphism that maps the sub- 

group G(L/P'(x)) onto G (~ Inn(G)). 

PART 3: Verifying the hypothesis of Lemma 1. It remains to show that  for each 

involution I of Gp there exists a P-point q E 7~' with I(q) = ~(I)(q). We have 

/3(I) = 6A where A E H has image in H/G equal to/3(I) .  By the hypothesis on 

lifting of involutions, we can choose A such that A 2 = 1. By w there exists a 

0-point  q' E :H' such that  c(q') = 6A(q'). 
Note that ~ does not lie in the real closed field fixed by I. Therefore, the 

restriction Io of I to an element of GQ is not trivial. Since all involutions in GQ 
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are conjugate, there is a E GQ such that  a - l I o a  equals the restriction of c to (~. 

Set q = a(q'). Since 5A is defined over Q we have 

I ( q )  7- Io(q)  : Io0~(q' ) = O~c(q t) = O~A(q'  ) : ~AOl(q ') : ~A(q)  : ~ ( I ) ( q ) ,  

as desired. I 

We thank M. Jarden and D. Haran for their contributions to the following 

lemma. 

LEMMA 3: Let f:  E -~ C be a surjection of  finite groups. Let Z be a set of 

involutions of  C such that every z E Z lifts to an involution of  E.  Then there 

exists a surjeetion g: A --* E of  finite groups with the following properties: Every  

automorphism ~ of  C with "~(Z) = Z lifts to an automorphism a of A O.e., 

f o g o a = 7 o f o g). Further, every z E Z lifts to an involution in A. 

Proof'. Let .To be a free group with a system of generators that  are in 1-1 

correspondence with the elements of E,  and let .To ~ E be the extension of the 

given map on the generators. Let 9 r be the free product of .To and a number of 

groups (Yi/ of order 2, one for each element of Z. Extend the above map to a 

map )r _. E sending the y~ to involutions of E that  lie over the corresponding 

elements of Z. 

Let A/" be the intersection of all normal subgroups N of ~- with : ; I N  ~- E.  Then 

A%f.~/A/" is a finite group, and the map ~ - ~  E induces a surjection g: A ~ E.  

Every automorphism 7 of C with 7(Z)  -- Z is induced from an automorphism 

of 3 r (permuting the generators). This automorphism fixes A/', hence induces an 

automorphism a of A. Clearly a lifts 7. Also, since every z E Z lifts to an 

involution of :P, it lifts to an involution of A. | 

THEOREM: Let P be a PRC-field of  characteristic O. Let h: H --~ C be a sur- 

jection of  finite groups, and let ~: Gp ~ C be a surjection such that for every 

involution I of Gp the element 3( I )  lifts to an element of  H of order <_ 2. Then: 

(a) There exists a surjection e0: Gp(x) ---+ H with heo = 30, where 30: Gp(x) ---+ C 

is the composition of/3 with restriction Gp(z) ~ Gp. 

(b) I f  P is Hilbertian there exists a surjection e: Gp --* H with he =/3. 

Proof'. We prove (b). The same proof works for (a) if we replace 3 by 30, Gp 

by Gp(x) and use part  (a) of Proposition 1 instead of part  (b). 



96 M.D. FRIED AND H. VC)LKLEIN Isr. J. Math. 

Let Z be the set of involutions of C that  lift to involutions of Gp.  By [HJ1, 

Cor. 6.2] there is a surjection A: C ~ C of finite groups such that  the involutions 

of C \ :~er(A) are mapped onto Z by A. Set 

E = { ( a ,  �9 H • d :  = A ( b ) }  

(the fiber product of H and C over C). Let r :  E --+ H,  ~: E --+ C be the 

projections. Consider the surjection f = h o 7r = A o ~: E --+ C. Clearly, each 

z �9 Z lifts to an involution of E.  Thus we can choose a surjection g: A ~ E 

with the properties from Lemma 3. 

Now suppose P is Hilbertian. I t  follows from Proposition l (b)  that  there is a 

surjection 0: G p  - "+  A with k e r ( / o  g o 0) = ker(~). Thus ~/o f o g o 0 = /3  for some 

automorphism ~ of C. Now fix some z �9 Z. There is an involution u �9 G p  with 

z = ~(u). Since/3 = ~/o f o g o 0, we have z = "y(z'), where z' = f o g o O(u). Now 

z '  = / o g o 0 ( . )  = o o g o = 

where 5 -- # o g o 0 ( v )  is an involution of C \ k e r ( A )  (since z' r 1). Thus 

z ~ = A(~) �9 Z by the choice of A. We have shown that  z' = ~ - l ( z )  lies in Z for 

every z �9 Z. Thus "y(Z) = Z. 

By choice of A, we can lift "y to an automorphism (~ of A. Then e ~ f ~ T o g o a o O  

is a surjection G p  ""+ H with he = h o r  ogo(~oO = f o g o ~ o O  = ~/o f ogoO = B, 

as desired. | 

The theorem suggests the following defnition. Let ~ be a profinite group. We 

say that  all r e s t r i c t e d  f in i te  e m b e d d i n g  p r o b l e m s  for G are solvable if the 

following holds: For each surjection h: H ~ C of finite groups, and for each 

surjection ~: G ~ C such that  for every involution I of G the element ~( I )  lifts 

to an element of H of order < 2 there exists a surjection e: G --+ H with he = f~. 

Now we show that  among groups of countable rank, this condition characterizes 

the real-free groups 6 (in the sense of [HJ2]). This generalizes Iwasawa's result: 

Solvability of a11 finite embedding problems for a profinite group of countable 

rank forces the group to be free. More precisely, the group is isomorphic to the 

free profinite group F~ of countably infinite rank [FrJ, Cor. 24.2]. 

For each profinite group G, let A(G) be the set of conjugacy classes of elements 

of ~ of order < 2. Endow A(~) with the topology as a quotient of the (closed) 

set of elements of order < 2. We view A(G) as a pointed topological space, where 

the trivial class {1} is the distinguished element. 
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PROPOSITION 2: Suppose G and 7-I are profinite groups of countable rank t'or 

which all restricted finite embedding problems are solvable. If  A(G) and A(7-l) 

are homeomorphic as pointed topological spaces, then G and 7-t are isomorphic. 

Proo~ Fix a homeomorphism between A(G) and A(7-/) under which the trivial 

class of A(G) corresponds to that  of A(7-/). Use this homeomorphism to identify 

the two spaces. Set A = A(G ) = A(7-/). 

The condition of countable rank yields sequences of open normal subgroups of 

G and 7-/, respectively, 

G = j~f(0) > j~f(1) > j~(2)  > . . .  

"H=A.4 (~ > .M O) > .M (2) > - . .  

with trivial intersection. 

We now construct further such sequences 

G = X o  > H~ > N2 > . - .  

7-l=A/fo > A/t1 > 2~42 > --- 

with the following additional properties. 

(1) There are isomorphisms ~i: G/Afi --~ 7-l/Mi, compatible in the sense that 

~i composed with the natural map 7-//.t/f~ --. 7-l/.Mi_l is the same as the 

composition of 6 / J ~  --~ 6/Af~-I with ~i-1. 

(2) For each 5 e A, the images of 5 in A(G/Af~) and in A(7-//Adi) correspond 

under ~i. 

We construct the ni inductively, starting with the trivial case i -- 0. Now assume 

i > 0, and everything has been constructed up to the index i - 1, satisfying (1) 

and (2). If i is even, proceed as follows; if i is odd, interchange the roles of G and 

7-/. (This is the usual trick in showing that  free profinite groups are characterized 

by the solvability of embedding problems, cf. [FrJ, Lemma 24.1]). 

Choose Adi to be any open normal subgroup of 7-/contained in A/t(i) and in 

A/ti_l. Since the open normal subgroups Af of G form a basis for the neighbor- 

hoods of 1, one can choose Af C Afi-1 such that  any two elements of A that  

have the same image in A(G/Af) also have the same image in A(7-//A~). Set 

= G I N  and ~ = ~t/M~. 
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Now consider the fiber product 

F = {(gj~r h.~i) ~ ~ x ~ :  tQ_l(gJ~f/_l) = h i ' i - l }  

Let ~rl: F ~ G and r2: F ~ ~ be the projections. By [HJ1, Cor. 6.2] there 

exists a finite group E and a surjection A: E ~ F such that the involutions of 

E \ ker(A) are mapped onto those involutions (gAf, h]~4i) of F for which g E 6 

and h C 7-/correspond to the same element of A. 

The canonical map G -* ~ and the map 7rlA: E --* ~ make a restricted em- 

bedding problem for G. Namely, by (2), for each involution g of G there is an 

involution h E ~ with ~i-l(gAfi-1) = hA~i-1, such that g and h correspond 

to the same element of A. Thus if g A f r  1 then gAf lifts to the involution 

(gAf, hAdl) of F, and this involution lifts to an involution of E (by the choice of 

E). The condition of a restricted embedding problem is fulfilled. Let X: ~ ~ E 

be a solution of this embedding problem (i.e., ~I~X is the canonical map G -~ ~). 

Finally let Afi be the kernel of the surjection ~2AX: G ~ 7~. Let ni : G/Af~ --* 

7~ - ~ / M i  be the induced isomorphism. The validity of (1) is then clear by 

construction. For (2), consider 5 C A, represented by the involution g E G. 

If Ax(g) r 1, then ~((g) is an involution of E \ ker(A). Hence Ax(g) is of the 

form (g'Af, hMi)  where g~ E G and h C 7-/correspond to the same element 5 ~ of 

A. Since rl)~X is the canonical map G ~ ~, we have g~Af = gal. This implies 

that 5 and 5' have the same image in A(7-//Mi) (by the choice of Af). We have 

ni(gAf 0 = hM~. Hence the image of 5 in A(G/Afi) corresponds under ni to the 

image of 5' in A(~ /M~) .  The latter equals the image of 5 in A(7-//M~) (by the 

above). This proves (2) in the case Ax(g) ~ 1. 
Now assume Ax(g) = 1. Then ~i(gAfi) = 7r2Ax(g) = 1, and gN" = ~IAX(g) = 1. 

The former means that 5 has trivial image in A(G/Afi), and the latter means that  

5 has trivial image in A(G/N'). Then it also has trivial image in A(~/A~I)  (by 

the choice of N'). Thus (2) also holds in the present case. Now we have verified 

conditions (1) and (2). 

If one alternates the roles of G and ~ in each step of the construction, then it 

is clear that the sequences (Afi) and (Mi)  both have trivial intersection. (This 

is because we have required that  Adi < Ad(/); in the next step one gets Af~+l _< 

Af (i+~) etc.). It follows from (1) that the isomorphisms ~i glue together to an 

isomorphism from ~ to 7-/. This completes the proof of the Proposition. | 
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Remark: Compare the above Proposition with Lemma 3.4 of [HJ3], which con- 

siders proper real embedding problems (as opposed to our restricted embedding 

problems). | 

From now on we consider only profinite groups G whose involutions form a 

closed subset. The absolute Galois group GK of each field K has this property. 

(The subgroup of GK fixing ~ is a neighborhood of the identity that  contains 

no involutions). Let A 0 ( 6 ) ~ f A ( ~ ) \ { 1 }  be the set of conjugacy classes of invo- 

lutions of ~. Since the involutions form a closed set, A(G) has the topology of a 

disjoint union of A0(G) and the distinguished point. 

Proposition 2 says that for each topological space A0 there is - -  up to iso- 

morphism - -  at most one profinite group ~ of countable rank with the following 

properties: A0(G) -~ A0, all finite restricted embedding problems for G are solv- 

able, and the set of involutions of G is closed. If such G exists then A0 is a 

boolean space with countable basis. 

Conversely, for each such Ao there is actually a group G = G(A0) with the 

above properties. This is a rea/-free group in the sense of [HJ2]. It can be 

constructed as follows (see [H J2]): Take a group freely generated (in the category 

of profinite groups) by a set of involutions homeomorphic to A0. Form the free 

product of this group w i t h / ~  (see above). This yields the group 6(A0). 

For a field P,  let Y(P)  be the set of orderings of P. The Harrison topology 

on Y(P)  has a subbasis of clopen sets of the form Ha, a E P*, where Ha is the 

set of all orderings for which a is positive. The spaces Y(P)  and Ao(Gp) are 

naturally homeomorphic, via the map that associates with a class of involutions 

I E Gp the ordering of P induced by the unique ordering of the fixed field of I 

[H, p. 399]. 

If P is countable, its absolute Galois group has countable rank [F J, Ex. 15.13]. 

Combine this with the above remarks, with Proposition 2 and our main theorem 

to obtain the following. 

COROLLARY 1: If  P i8 a countable Hilbertian PRC-field, then the absolute Ga- 

lois group Gp is isomorphic to the real-free group 6(Y(P)).  Here Y(P)  is the 

topological space of orderings of P. Thus Gp i8 isomorphic to the free product 

(in the category of profinite groups) of F~ with a group that is freely generated 

by a set of involutions homeomorphic to Y(P).  

COROLLARY 2: Let P be a finite proper extension of the field Qre of all totally 
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real algebraic numbers. Then the absolute Galois group Gp is real-free. I f  P has 

no ordering then Gp is isomorphic to F~. Otherwise Gp is isomorphic to 6(X~) ,  

with X~ the Cantor set. Thus only two isomorphism types occur among the Gp. 

Proof." By the Introduction, P is countable, Hilbertian and PRC. Thus Gp TM 

G(Y(P))  by Corollary 1. If P has no ordering then Y ( P )  is empty, hence Gp ~- 

F~. It remains to show that Y ( P )  ~- X~ in all other cases. This is done in the 

following Remark, which is due to M. Jarden. | 

Remark - -  M. Jarden: Proper real extensions of Qr~. Let P be a finite proper 

extension of Q~ that has at least one ordering. There is a number field L with 

LQr~ = P.  Let K -- L N Qre. Then L has a finite positive number of orderings. 

Let L1 be a finite extension of L contained in P,  and let K1 = LI (3 Q~e. Then 

L is linearly disjoint from K1 over K. As K1 is totally real, each embedding of 

K into the reals extends to [K1 : K] embeddings of K1 into the reals. Therefore, 

each ordering of K extends to [K1 : K] orderings of K1. Since L is linearly 

disjoint from K1 over K,  each pair of orderings of L and of K1 which coincide on 

K has a unique extension to L1 [Ja; p. 241]. Since the space of orderings of P is 

the projective limit of the space of orderings of all those Ll'S, it is isomorphic to 

the Cantor set X~ (see [H J3]). | 
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