THE ABSOLUTE GALOIS GROUP OF A HILBERTIAN PRC FIELD*

ΒY

MICHAEL D. FRIED**

Department of Mathematics, UC Irvine Irvine, CA. 92717, USA, e-mail: mfried@math.uci.edu

AND

Helmut Völklein***

Department of Mathematics, University of Florida Gainesville, FL 32611, USA. e-mail: helmut@math.ufl.edu

ABSTRACT

We determine the absolute Galois group of a countable Hilbertian P(seudo)R(eal) C(losed) field P of characteristic 0. This group turns out to be realfree, determined up to isomorphism by the topological space of orderings of P. Examples of such fields P are the proper finite extensions of the field of all totally real numbers.

Introduction

All fields occurring in this paper are assumed to have characteristic 0. A field P is called P(seudo)A(lgebraically)C(losed) if every (non-empty) absolutely irreducible variety V defined over P has a P-rational point. In [FV2] it was shown that over a Hilbertian PAC-field, all finite embedding problems are solvable. Thus, the absolute Galois group of a countable Hilbertian PAC-field is the free profinite group of countably infinite rank. Now we generalize this result to the

^{*} Part of this work was done while the authors were fellows of the Institute for Advanced Studies in Jerusalem

^{**} Supported by NSA grant MDA 14776 and BSF grant 87-00038

^{***} Supported by NSA grant MDA 904-89-H-2028 Received June 23, 1992 and in revised form July 16, 1993

larger class of P(seudo)R(eal)C(losed) fields P. These are defined by the property that every non-singular absolutely irreducible variety V defined over P has a P-rational point if it has a point over each real closure of P. Our main result says that all restricted finite embedding problems over a Hilbertian PRC-field (of characteristic 0) are solvable. This is the main step in proving that the absolute Galois group of such a field is real-free (in the sense of [HJ2]), determined up to isomorphism by the topological space of orderings of the field (see Corollary 1).

Pop [P] has recently shown that the field \mathbb{Q}_{re} of all totally real algebraic numbers is PRC. Then any finite extension K of \mathbb{Q}_{re} is PRC [Pr, Th. (3.1)]. Since \mathbb{Q}_{re} is a Galois extension of \mathbb{Q} , any finite proper extension K of \mathbb{Q}_{re} is also Hilbertian (by Weissauer's theorem [Ws] or [FrJ], Cor. 12.15]). Thus, $G(\overline{\mathbb{Q}}/K)$ is real-free by the results of this paper. Actually, there are exactly two possible isomorphism types for these groups $G(\overline{\mathbb{Q}}/K)$ (Corollary 2). The latter is an observation of M. Jarden.

ACKNOWLEDGEMENT: We thank D. Haran and M. Jarden for helpful discussions.

Comments on PRC fields: PRC-fields were introduced by Prestel [Pr]. The absolute Galois group of a PRC-field is real-projective in the sense of [HJ1]. Conversely, each real-projective profinite group is the absolute Galois group of a PRC-field by [HJ1]. On the other hand, for any real closed field R, R(x) has real-projective (even real-free) absolute Galois group, but it is not PRC.

Notations: As above, we assume all occurring fields to have characteristic 0. Denote the algebraic closure of a field k by \bar{k} . The absolute Galois group $G(\bar{k}/k)$ of k is denoted by G_k . The semi-direct product of groups A and B is written as $A \times^s B$ (where A is normal). The normalizer (resp., centralizer) of A in B is denoted $N_B(A)$ (resp., $C_B(A)$). An involution is an element of order 2. Other notations as introduced above.

1. Real points on Hurwitz spaces

We recall the set-up of [FV1, §1]. Let G be a finite group, let Aut(G) be its automorphism group and let Inn(G) be the group of inner automorphisms.

1.1 THE HURWITZ MONODROMY GROUP. Fix an integer $r \geq 3$. We let \mathcal{U}_r be the space of all subsets of cardinality r of the Riemann sphere $\mathbb{P}^1 = \mathbb{C} \cup \{\infty\}$.

We choose a base point $\mathbf{b} = \{b_1, \ldots, b_r\} \in \mathcal{U}_r$, where $b_{\nu} = 1 + (r - 2\nu + 1)i$ (and $i^2 = -1$). The important property is that the complex conjugate of b_{ν} is $b_{r-\nu+1}$ for $1 \leq \nu \leq r/2$.

The space \mathcal{U}_r has a natural structure of algebraic variety defined over \mathbb{Q} [FV1, §1.1]. So, the above base point **b** is rational over \mathbb{Q} . For the moment, we view \mathcal{U}_r only as a complex manifold. Its fundamental group $\pi_1(\mathcal{U}_r, \mathbf{b})$, based at **b**, is the Hurwitz monodromy group H_r , which has classical **elementary braid** generators Q_1, \ldots, Q_{r-1} [FV1,§1.3].

1.2 MODULI SPACES FOR COVERS OF THE RIEMANN SPHERE. Consider covers $\chi: X \to \mathbb{P}^1$ of compact (connected) Riemann surfaces. Two covers $\chi: X \to \mathbb{P}^1$ and $\chi': X' \to \mathbb{P}^1$ are **equivalent** if there exists an isomorphism $\epsilon: X \to X'$ with $\chi' \epsilon = \chi$. Let $\operatorname{Aut}(X/\mathbb{P}^1)$ be the group of automorphisms ϵ of X with $\chi \epsilon = \chi$. We call χ a Galois cover if $\operatorname{Aut}(X/\mathbb{P}^1)$ is transitive on the fibers of χ . From now on χ will be a Galois cover. All but finitely many points of \mathbb{P}^1 have the same number of inverse images under χ . These exceptional points are the **branch points** of χ .

Let $\mathcal{H}_r^{\mathsf{ab}}(G)$ be the set of equivalence classes $|\chi|$ of all Galois covers $\chi: X \to \mathbb{P}^1$ with r branch points and with $\operatorname{Aut}(X/\mathbb{P}^1) \cong G$. Let $\mathcal{H}_r^{\operatorname{in}}(G)$ be the set of equivalence classes of pairs (χ, h) where $\chi: X \to \mathbb{P}^1$ is a Galois cover with r branch points, and $h: \operatorname{Aut}(X/\mathbb{P}^1) \to G$ is an isomorphism. Two such pairs (χ, h) and $(\chi': X' \to \mathbb{P}^1, h')$ are called **equivalent** iff there is an isomorphism $\delta: X \to X'$ with $\chi'\delta = \chi$ and $h'c_{\delta} = h$. Here $c_{\delta}: \operatorname{Aut}(X/\mathbb{P}^1) \to \operatorname{Aut}(X'/\mathbb{P}^1)$ is the isomorphism induced by δ (i.e., $c_{\delta}(A) = \delta A \delta^{-1}$). Let $|\chi, h|$ denote the equivalence class of the pair (χ, h) . Let $\Lambda: \mathcal{H}_r^{\operatorname{in}}(G) \to \mathcal{H}_r^{\operatorname{ab}}(G)$ be the map sending $|\chi, h|$ to $|\chi|$.

Define the maps $\Psi: \mathcal{H}_r^{\mathrm{ab}}(G) \to \mathcal{U}_r$ and $\Psi': \mathcal{H}_r^{\mathrm{in}}(G) \to \mathcal{U}_r$ by sending $|\chi|$ and $|\chi, h|$, respectively, to the set of branch points of χ . The sets $\mathcal{H}_r^{\mathrm{ab}}(G)$ and $\mathcal{H}_r^{\mathrm{in}}(G)$ carry a natural topology [FV1, §1.2] such that Ψ and Ψ' are (unramified) coverings. Then also $\Lambda: \mathcal{H}_r^{\mathrm{in}}(G) \to \mathcal{H}_r^{\mathrm{ab}}(G)$ is a covering, and $\Psi \circ \Lambda = \Psi'$. Note that through these coverings the spaces $\mathcal{H}_r^{\mathrm{ab}}(G)$ and $\mathcal{H}_r^{\mathrm{in}}(G)$ inherit a structure of complex manifold from \mathcal{U}_r .

To determine the equivalence class of the covering Ψ , we need to identify the natural permutation representation of $H_r = \pi_1(\mathcal{U}_r, \mathbf{b})$ on the fiber $\Psi^{-1}(\mathbf{b})$. (Here **b** is our fixed base point in \mathcal{U}_r .) Recall that this action is defined as follows: Each closed path ω in \mathcal{U}_r based at **b** sends a point $\mathbf{p} \in \Psi^{-1}(\mathbf{b})$ to the endpoint of the

unique lift of ω with initial point **p**. Similarly for $\mathcal{H}_r^{in}(G)$.

This depends on the choice of generators $\gamma_1, \ldots, \gamma_r$ for the fundamental group $\Gamma = \pi_1(\mathbb{P}^1 \setminus \mathbf{b}, 0)$. (By abuse, we identify the paths γ_j and their homotopy classes.) Let γ_j be a path that goes on a straight line (in the complex plane) from 0 towards b_j , then travels on a small circle in clockwise direction around b_j , and returns on the straight line to 0. (The small circles must be disjoint). Then Γ is a free group on generators $\gamma_1, \ldots, \gamma_{r-1}$, and $\gamma_1 \cdots \gamma_r = 1$. We can arrange things such that the complex conjugate of γ_j is γ_{r-j+1}^{-1} for $j = 1, \ldots, r/2$ (since the corresponding relation holds for the b_j 's).

Now let $\chi: X \to \mathbb{P}^1$ be a (Galois) cover of \mathbb{P}^1 with $|\chi| \in \Psi^{-1}(\mathbf{b})$. This means $\operatorname{Aut}(X/\mathbb{P}^1) \cong G$, and b_1, \ldots, b_r are the branch points of χ . Thus χ restricts to an unramified cover of the punctured sphere $\mathbb{P}^1 \setminus \mathbf{b}$. By the theory of covering spaces, the latter corresponds to a normal subgroup U_{χ} of $\Gamma = \pi_1(\mathbb{P}^1 \setminus \mathbf{b}, 0)$, and Γ/U_{χ} is isomorphic to $\operatorname{Aut}(X/\mathbb{P}^1)$. Thus there is a surjection $f: \Gamma \to G$ with kernel U_{χ} . The surjection f is determined by the r-tuple $(\sigma_1, \ldots, \sigma_r) = (f(\gamma_1), \ldots, f(\gamma_r))$. This r-tuple $(\sigma_1, \ldots, \sigma_r)$ has the following properties: $\sigma_1 \cdots \sigma_r = 1$, the group G is generated by $\sigma_1, \ldots, \sigma_r$, and $\sigma_j \neq 1$ for all j. The last condition means that the cover χ is actually ramified over each b_j [FV1, §1.3]. Let \mathcal{E}_r denote the set of these r-tuples $(\sigma_1, \ldots, \sigma_r)$.

Each tuple $(\sigma_1, \ldots, \sigma_r) \in \mathcal{E}_r$ occurs for some χ . Another choice of f (for the same or equivalent χ) results in an r-tuple conjugate to $(\sigma_1, \ldots, \sigma_r)$ under an element of Aut(G). Since f determines $U_{\chi} = \ker(f)$, hence $|\chi|$ uniquely, we get the following. The above gives a bijection between the points $|\chi|$ in the fiber $\Psi^{-1}(\mathbf{b})$ and the set $\mathcal{E}_r^{ab} \stackrel{\text{def}}{=} \mathcal{E}_r / \operatorname{Aut}(G)$ of Aut(G)-classes of the tuples $(\sigma_1, \ldots, \sigma_r)$. Via this bijection, $H_r = \pi_1(\mathcal{U}_r, \mathbf{b}) = \langle Q_1, \ldots, Q_{r-1} \rangle$ acts on \mathcal{E}_r^{ab} . For a suitable choice of the generators Q_1, \ldots, Q_{r-1} this action is given by the following rule [FV1, §1.4]: The element Q_j sends the class of $(\sigma_1, \ldots, \sigma_r)$ to the class of

(1)
$$(\sigma_1, \ldots, \sigma_{j+1}, \sigma_{j+1}^{-1}\sigma_j\sigma_{j+1}, \ldots, \sigma_r)$$

(This observation goes back to Clebsch and Hurwitz).

Similarly, we get a bijection between the points $|\chi, h|$ in the fiber $(\Psi')^{-1}(\mathbf{b})$ and the set $\mathcal{E}_r^{\operatorname{in} \operatorname{def}} \mathcal{E}_r/\operatorname{Inn}(G)$. Here one has to observe additionally that if $\chi \colon X \to \mathbb{P}^1$ is a Galois cover with branch points b_1, \ldots, b_r as above, then there is a surjection $\iota \colon \Gamma \to \operatorname{Aut}(X/\mathbb{P}^1)$ with kernel U_{χ} that is canonical up to composition with inner automorphisms: Fix a point $y_0 \in \chi^{-1}(0)$. For each path γ representing an element of Γ , let y be the endpoint of the unique lift of γ to $X \setminus \chi^{-1}(\mathbf{b})$ with initial point y_0 . Then, ι sends γ to the unique element ϵ of $\operatorname{Aut}(X/\mathbb{P}^1)$ with $\epsilon(y) = y_0$. Varying y_0 over $\chi^{-1}(0)$ means composing ι with inner automorphisms of $\operatorname{Aut}(X/\mathbb{P}^1)$. Now set $f = h\iota$, and associate to $|\chi, h|$ the $\operatorname{Inn}(G)$ -class of the tuple $(\sigma_1, \ldots, \sigma_r) = (f(\gamma_1), \ldots, f(\gamma_r))$. This yields the desired bijection between $(\Psi')^{-1}(\mathbf{b})$ and $\mathcal{E}_r^{\text{in}}$. The resulting action of H_r on $\mathcal{E}_r^{\text{in}}$ is again given by formula (1) [FV1, §1.4].

1.3 THE ALGEBRAIC STRUCTURE OF THE MODULI SPACES. Consider a cover $\chi: X \to \mathbb{P}^1$ as above. The space X has a unique structure of algebraic variety defined over \mathbb{C} (compatible with its analytic structure) such that χ becomes an algebraic morphism (Riemann's existence theorem). Thus, for each (not necessarily continuous) automorphism β of \mathbb{C} , we can consider the cover $\chi^{\beta}: X^{\beta} \to \mathbb{P}^1$ obtained from $\chi: X \to \mathbb{P}^1$ through base change with β .

By the main result of [FV1], the spaces $\mathcal{H}_r^{ab}(G)$ and $\mathcal{H}_r^{in}(G)$ have a structure of (reducible) algebraic variety defined over \mathbb{Q} (compatible with their natural analytic structure) such that Ψ, Ψ' and Λ are morphisms defined over \mathbb{Q} . Also, each automorphism β of \mathbb{C} sends the point $|\chi| \in \mathcal{H}_r^{ab}(G)$ to $|\chi^{\beta}|$. Further, β sends the point $|\chi, h| \in \mathcal{H}_r^{in}(G)$ to $|\chi^{\beta}, h \circ \beta^{-1}|$, where $\chi: X \to \mathbb{P}^1$ and h: $\operatorname{Aut}(X/\mathbb{P}^1) \to G$ as usual, and $h \circ \beta^{-1}$: $\operatorname{Aut}(X^{\beta}/\mathbb{P}^1) \to G$ is the isomorphism that maps a^{β} to h(a) for every $a \in \operatorname{Aut}(X/\mathbb{P}^1)$. With these conditions the \mathbb{Q} structures on these spaces are unique.

In particular, we get an action of the absolute Galois group $G_{\mathbb{Q}}$ on the fibers $\Psi^{-1}(\mathbf{b})$ and $(\Psi')^{-1}(\mathbf{b})$. Via the above bijections, this gives an action on \mathcal{E}_r^{ab} and on \mathcal{E}_r^{in} . We need the following fact.

(2) Complex conjugation c acts on \mathcal{E}_r^{ab} and on \mathcal{E}_r^{in} by sending the class of $(\sigma_1, \ldots, \sigma_r)$ to the class of $(\sigma_r^{-1}, \ldots, \sigma_1^{-1})$.

It suffices to prove the following statement. If $|\chi, h| \in (\Psi')^{-1}(\mathbf{b})$ corresponds to the class of $(\sigma_1, \ldots, \sigma_r)$ in $\mathcal{E}_r^{\text{in}}$, then $|\chi^c, h \circ c|$ corresponds to the class of $(\sigma_r^{-1}, \ldots, \sigma_1^{-1})$. This is a straightforward consequence of the definitions, and of the formula $c(\gamma_j) = \gamma_{r-j+1}^{-1}$ $(j = 1, \ldots, r/2)$ from §1.2 (cf. [DeFr, Lemma 2.1]).

1.4 CHOOSING SUITABLE COMPONENTS OF THE MODULI SPACES. Fix an integer $s \ge 4$ divisible by 4. Let r be the product of s with the number of conjugacy classes $\neq \{1\}$ of G. Let $\mathcal{E}^{(s)}$ be the set of all r-tuples $(\sigma_1, \ldots, \sigma_r) \in \mathcal{E}_r$ satisfying this: For each conjugacy class $C \neq \{1\}$ of G there are exactly s indices j such

that $\sigma_j \in C$. Further, let $\mathcal{E}_{ab}^{(s)}$ (resp., $\mathcal{E}_{in}^{(s)}$) be the image of $\mathcal{E}^{(s)}$ in \mathcal{E}_r^{ab} (resp., \mathcal{E}_r^{in}). The sets $\mathcal{E}_{ab}^{(s)}$ and $\mathcal{E}_{in}^{(s)}$ are invariant under the action of the Hurwitz group H_r (via formula (1)). For the rest of §1, assume the Schur multiplier of G is generated by commutators [FV1, §2.4]. By a theorem of Conway and Parker [FV1, Appendix], this implies that H_r acts transitively on $\mathcal{E}_{ab}^{(s)}$ and $\mathcal{E}_{in}^{(s)}$ for suitably large s. From now on we assume s has been chosen such that this holds.

By the theory of covering spaces, the connected components of $\mathcal{H}_r^{\mathrm{ab}}(G)$ (resp., $\mathcal{H}_r^{\mathrm{in}}(G)$) are in 1-1 correspondence with the orbits of H_r on the fiber $\Psi^{-1}(\mathbf{b})$ (resp., $(\Psi')^{-1}(\mathbf{b})$). The set $\mathcal{E}_{ab}^{(s)}$ (resp., $\mathcal{E}_{\mathrm{in}}^{(s)}$) yields such an orbit (through the identifications in §1.3). Let \mathcal{H} (resp., \mathcal{H}') denote the corresponding component of $\mathcal{H}_r^{\mathrm{ab}}(G)$ (resp., $\mathcal{H}_r^{\mathrm{in}}(G)$). We call these spaces **Hurwitz spaces**. By [FV1, Thm. 1], \mathcal{H} and \mathcal{H}' are absolutely irreducible components, defined over \mathbb{Q} , of $\mathcal{H}_r^{\mathrm{ab}}(G)$ and $\mathcal{H}_r^{\mathrm{in}}(G)$, respectively. From now on we work only with \mathcal{H} and \mathcal{H}' .

Let $\Psi: \mathcal{H} \to \mathcal{U}_r$ and $\Psi': \mathcal{H}' \to \mathcal{U}_r$ denote the restriction of the original maps. Thus $\Psi: \mathcal{H} \to \mathcal{U}_r$ is a connected covering, and the fiber $\Psi^{-1}(\mathbf{b})$ is identified with the set $\mathcal{E}^{(s)}_{\mathbf{ab}}$. A similar statement holds for \mathcal{H}' . We get the sequence of coverings

$$\mathcal{H}' \xrightarrow{\Lambda} \mathcal{H} \xrightarrow{\Psi} \mathcal{U}_r$$

where Λ restricts to the natural map $\mathcal{E}_{in}^{(s)} \to \mathcal{E}_{ab}^{(s)}$ on the fibers over **b**.

For $A \in \operatorname{Aut}(G)$, let $\delta_A: \mathcal{H}' \to \mathcal{H}'$ send the point $|\chi, h|$ to $|\chi, A \circ h|$. Then δ_A is an automorphism of the covering $\Lambda: \mathcal{H}' \to \mathcal{H}$. It depends only on the class of Amodulo $\operatorname{Inn}(G)$. In fact, Λ is a Galois covering, and $A \mapsto \delta_A$ induces an isomorphism from $\operatorname{Out}(G) = \operatorname{Aut}(G)/\operatorname{Inn}(G)$ to $\operatorname{Aut}(\mathcal{H}'/\mathcal{H})$ [FV1, §6.1]. Furthermore, δ_A is a morphism defined over \mathbb{Q} [FV1, §6.2].

Identify the fiber $(\Psi')^{-1}(\mathbf{b})$ with \mathcal{E}_r^{in} as above. This yields an action of the maps δ_A on \mathcal{E}_r^{in} . Thereby, δ_A sends the class of $(\sigma_1, \ldots, \sigma_r)$ to the class of $(A(\sigma_1), \ldots, A(\sigma_r))$. (Clear from the definitions).

1.5 MORE ABOUT COMPLEX CONJUGATION c. The following observation is crucial in the proof of the main theorem.

(3) For each $A \in Aut(G)$ with $A^2 = 1$ there is \overline{Q} -rational point $q \in \mathcal{H}'$ lying over **b** such that $c(q) = \delta_A(q)$.

Recall the choice of r and s from §1.4. Choose $\sigma_1, \ldots, \sigma_{r/2}$ such that for each conjugacy class $C \neq \{1\}$ of G there are exactly s/2 indices $j \in \{1, \ldots, r/2\}$ with $\sigma_j \in C$. Arrange additionally that $\sigma_1 \cdots \sigma_{r/2} = 1$: take $\sigma_2 = \sigma_1^{-1}$, $\sigma_4 = \sigma_3^{-1}$

etc. This is possible since s is divisible by 4. Then set $\sigma_{r-j+1} = A(\sigma_j^{-1})$ for $j = 1, \ldots, r/2$. This yields an r-tuple $(\sigma_1, \ldots, \sigma_r)$ in $\mathcal{E}^{(s)}$ such that $(\sigma_r^{-1}, \ldots, \sigma_1^{-1})$ is the A-conjugate of $(\sigma_1, \ldots, \sigma_r)$. By (2) and the action of δ_A on \mathcal{E}_r^{in} (§1.4), we can take **q** to be the point corresponding to $(\sigma_1, \ldots, \sigma_r)$.

Remark: Serre [Se2, p. 92] uses the same construction of the tuple $(\sigma_1, \ldots, \sigma_r)$ for A = 1 to obtain regular extensions of $\mathbb{R}(t)$. We adopted the choice of the b_j s from there.

2. The embedding problem over a Hilbertian PRC-field

We proceed similarly as in our paper on PAC-fields [FV2, section 1]. Here, however, there are places that require additional arguments.

LEMMA 1: Let $\mathcal{H}' \to \mathcal{H}$ be an unramified Galois covering of absolutely irreducible, non-singular varieties defined over a PRC-field P of characteristic 0. Assume all automorphisms of the cover are defined over P. Let $\beta: G_P \to$ $\operatorname{Aut}(\mathcal{H}'/\mathcal{H})$ be a homomorphism such that for each involution $I \in G_P$ there is a \overline{P} -point $q \in \mathcal{H}'$ with $I(q) = \beta(I)(q)$. Then there exists a P-rational point pof \mathcal{H} and a point $p' \in \mathcal{H}'$ lying over p with the following property: P(p') is the fixed field of ker(β), and the G_P -orbit of p' coincides with the $\beta(G_P)$ -orbit of p'.

Proof: We modify the proof of [FV2, Lemma 1]. View β as a 1-cocycle of G_P in Aut(\mathcal{H}'). Such a cocycle defines a twisted form \mathcal{H}'' of \mathcal{H}' over P (via Galois cohomology, see [Se1, Ch.III, Prop.5]). Identify the \bar{P} -points of \mathcal{H}'' and of the original variety \mathcal{H}' . Then the twisted form defines a new action of G_P on these \bar{P} -points \mathbf{p}' . If the old action of $g \in G_P$ sends \mathbf{p}' to $g\mathbf{p}'$, then the new action sends \mathbf{p}' to $g\beta(g)\mathbf{p}'$.

Consider an involution I in G_P . The fixed field R in \overline{P} of I is a real closure of P. The point q with $I(q) = \beta(I)(q)$ is an R-rational point of \mathcal{H}'' (since $G(\overline{P}/R) = \langle I \rangle$). Thus \mathcal{H}'' has a point over each real closure of P. Since P is PRC (and \mathcal{H}'' is non-singular), \mathcal{H}'' has a P-rational point p'. The remainder of the proof is as in [FV2, Lemma 1]: The fact that p' is a P-rational point of \mathcal{H}'' means that $gp' = \beta(g)^{-1}p'$ for all $g \in G_P$. Since $\beta(g) \in \operatorname{Aut}(\mathcal{H}'/\mathcal{H})$, the image p of p' in \mathcal{H} is rational over P. The rest of the claim is clear.

The following group-theoretic Lemma overcomes some complications in the PRC-case. We thank D. Haran for supplying the present version of this Lemma (improved from the original version).

LEMMA 2: Let H be a finite group, and G a normal subgroup. Then there exists a surjection $f: \hat{H} \to H$ of finite groups such that for $\hat{G} = f^{-1}(G)$ the following holds: $C_{\hat{H}}(\hat{G}) = 1$, and the Schur multiplier of \hat{G} is generated by commutators. Further, each involution in $H \searrow G$ lifts to an involution in \hat{H} .

Proof: Choose a presentation $1 \to \mathcal{R} \to \mathcal{F} \to H \to 1$, where \mathcal{F} is the free product of a free group of finite rank with finitely many groups of order 2, say $\langle \delta_1 \rangle, \ldots, \langle \delta_e \rangle$, such that $\delta_1, \ldots, \delta_e$ map onto the involutions in $H \setminus G$. The inverse image \mathcal{F}_1 of G in \mathcal{F} contains no conjugates of $\delta_1, \ldots, \delta_e$. Hence, by the Kurosh Subgroup Theorem it is a free group of finite rank. Let $\mathcal{N} = [\mathcal{F}_1, \mathcal{R}]$ be the group generated by commutators [f, r] with $f \in \mathcal{F}_1, r \in \mathcal{R}$. Set $F = \mathcal{F}/\mathcal{N}, F_1 = \mathcal{F}_1/\mathcal{N},$ and $R = \mathcal{R}/\mathcal{N}$. Then $1 \to R \to F_1 \to G \to 1$ is a central extension.

By the general theory of the Schur multiplier [Hu, Kap.5, §23], R is the direct product of the Schur multiplier $M(G) = R \cap (F_1)'$ and a free abelian group A. Let A_0 be the intersection of all the F-conjugates of A. Then $A_0 \triangleleft F$. Since $[R:A] = |M(G)| < \infty$, also $[F:A_0] < \infty$. Set $\tilde{H} = F/A_0$, $\tilde{G} = F_1/A_0$, and $S = R/A_0$. Clearly, each involution in $H \searrow G$ lifts to an involution in \tilde{H} . Note that S is the direct product of $S \cap (\tilde{G})' \cong M(G)$ and A/A_0 .

STEP 1: The Schur multiplier $M = M(\tilde{G})$ is generated by commutators.

This is similar to the proof of [FV1, Lemma 1]. Let D be a representation group of \tilde{G} . Then there is a central extension

$$1 \to M \to D \to \tilde{G} \to 1$$

such that M lies in the commutator subgroup D' of D. Let L be the subgroup of M generated by commutators from D that fall into M. Set $\overline{M} = M/L$, $\overline{D} = D/L$. Then we have the central extension

$$1 \to \bar{M} \to \bar{D} \to \tilde{G} \to 1$$

where $\overline{M} \leq (\overline{D})'$. Furthermore, \overline{M} contains no non-trivial commutators from \overline{D} . Let T be the inverse image of S in \overline{D} under the map $\overline{D} \to \overline{G}$. Since S is central in \overline{G} , we have $[T, \overline{D}] \leq \overline{M}$. Hence $[T, \overline{D}] = 1$. Thus the sequence

$$1 \to T \to D \to G \to 1$$

is also a central extension. This implies that $|T \cap (\overline{D})'| \leq |M(G)|$ (see the proof of [Hu, Kap.3, Satz 23.5]).

On the other hand, $T \cap (\bar{D})'$ contains the inverse image in \bar{D} of $S \cap (\tilde{G})' \cong M(G)$ (since $\bar{M} \subset (\bar{D})'$); thus $|T \cap (\bar{D})'| \ge |M(G)| \cdot |\bar{M}|$. Hence $\bar{M} = 1$, and so $M(\tilde{G}) = M = L$ is generated by commutators. This completes Step 1.

STEP 2: Let T be a non-abelian finite simple group with trivial Schur multiplier. (For example, $T = SL_2(8)$ [Hu, Satz 25.7].) Form the regular wreath product \hat{H} of \tilde{H} with T [Hu, Def. 15.6]. Thus $\hat{H} = T^j \times^s \tilde{H}$, with $j = |\tilde{H}|$, and \tilde{H} acts on T^j by permuting the factors in its regular representation. Define $f: \hat{H} \to H$ as the composition of projection $\hat{H} \to \tilde{H}$ followed by the natural map $\tilde{H} \to H$. Then the properties required in the Lemma hold.

We have T^j contained in $\hat{G} = f^{-1}(G)$. Clearly, $C_{\hat{H}}(T^j) = 1$, hence also $C_{\hat{H}}(\hat{G}) = 1$. It is also clear that each involution in $H \searrow G$ lifts to an involution in \hat{H} (because this is true for \tilde{H}).

Any central extension of T splits because T is perfect and M(T) = 1. Thus every central extension of T^j splits. This implies that every representation group of \hat{G} has a normal subgroup isomorphic to T^j such that the quotient by this subgroup is a representation group of \tilde{G} . Therefore, $M(\hat{G}) \cong M(\tilde{G})$ is generated by commutators.

PROPOSITION 1: Let P be a PRC-field (of characteristic 0). Let H be a finite group and G a normal subgroup. Suppose $\beta: G_P \to H/G$ is a surjection such that for every involution $I \in G_P$ there exists an element in H of order ≤ 2 whose image in H/G equals $\beta(I)$. Let P' be the fixed field of ker(β). Then we have: (a) There exists a Galois extension L of P(x) containing P' and regular over P', such that there is an isomorphism $G(L/P(x)) \to H$ sending G(L/P'(x)) to G. (b) If P is Hilbertian, then there exists a Galois extension P''/P containing P' such that there is an isomorphism $G(P''/P) \to H$ sending G(P''/P') to G.

Proof: Claim (b) follows from (a): If P is Hilbertian, we obtain the desired extension P''/P by specializing the extension L/P(x). It remains to prove (a).

PART 1: Reduction to the case that $C_H(G) = 1$ and M(G) is generated by commutators. Let $f : \hat{H} \to H$ and $\hat{G} = f^{-1}(G)$ be as in Lemma 2. Then $\hat{H}/\hat{G} \cong H/G$ canonically. Suppose the conclusion of the Proposition holds for \hat{H} in place of H and \hat{G} in place of G. Then we can embed P' into a Galois extension K/P(x) with an isomorphism $G(K/P(x)) \to \hat{H}$ sending G(K/P'(x))to \hat{G} . The subfield of K corresponding to the kernel of $f : \hat{H} \to H$ is the desired L. This completes the reduction to the special case that $C_H(G) = 1$ and M(G) is generated by commutators. Assume from now on that these conditions hold.

PART 2: Application of [FV1]. Now we use the results of §1.4. There we constructed the unramified Galois cover $\Lambda: \mathcal{H}' \to \mathcal{H}$ of absolutely irreducible nonsingular varieties defined over \mathbb{Q} . Recall that all automorphisms of this cover are defined over \mathbb{Q} , and are of the form δ_A , $A \in \operatorname{Aut}(G)$.

Proposition 3 of [FV1] yields the following facts. For each point $\mathbf{p} \in \mathcal{H}$, rational over some field k, and for each point $\mathbf{p}' \in \mathcal{H}'$ lying over \mathbf{p} , there is a Galois extension L/k'(x), regular over $k' = k(\mathbf{p}')$, with the following properties: L is Galois over k(x), and there is an isomorphism h from G(L/k(x)) to the group Δ of all $A \in \operatorname{Aut}(G)$ for which $\delta_A(\mathbf{p}')$ is conjugate to \mathbf{p}' under G(k'/k). Furthermore, h restricts to an isomorphism between G(L/k'(x)) and $\operatorname{Inn}(G)$. (Note: k'/k is Galois because all automorphisms of the Galois covering Λ are defined over \mathbb{Q}).

Now assume k = P is a PRC-field. Consider the given Galois extension P'/Pwith group isomorphic to G/H. Since $C_H(G) = 1$, we can view H as a subgroup of $\operatorname{Aut}(G)$ (via conjugation action). Then H/G is a subgroup of $\operatorname{Out}(G)$. Hence it is isomorphic to a subgroup F of $\operatorname{Aut}(\mathcal{H}'/\mathcal{H})$, via the map $A \mapsto \delta_A$. The composition of the given map $\beta: G_P \to H/G$ with the map $H/G \cong F$ yields a homomorphism $\tilde{\beta}: G_P \to \operatorname{Aut}(\mathcal{H}'/\mathcal{H})$. Part 3 below shows that the hypothesis on the $\tilde{\beta}(I)$ from Lemma 1 holds. Thus we can choose p and p' so that P(p') = P', and the G_P -orbit of p' equals the F-orbit of p'.

For the associated Galois extension L/P(x), it follows that G(L/P(x)) is isomorphic to the group Δ of all $A \in \operatorname{Aut}(G)$ for which $\delta_A(\mathbf{p}')$ is conjugate to \mathbf{p}' under G(P'/P). Since $G_P \cdot \mathbf{p}' = F \cdot \mathbf{p}'$, we get

$$\Delta = \{A \in \operatorname{Aut}(G) \colon \delta_A(\mathbf{p}') \in F \cdot \mathbf{p}'\} = \{A \in \operatorname{Aut}(G) \colon \delta_A \in F\} = H.$$

Thus G(L/P(x)) is isomorphic to H, under an isomorphism that maps the subgroup G(L/P'(x)) onto $G \cong \text{Inn}(G)$.

PART 3: Verifying the hypothesis of Lemma 1. It remains to show that for each involution I of G_P there exists a \overline{P} -point $\boldsymbol{q} \in \mathcal{H}'$ with $I(\boldsymbol{q}) = \tilde{\beta}(I)(\boldsymbol{q})$. We have $\tilde{\beta}(I) = \delta_A$ where $A \in H$ has image in H/G equal to $\beta(I)$. By the hypothesis on lifting of involutions, we can choose A such that $A^2 = 1$. By §1.5 there exists a $\overline{\mathbb{Q}}$ -point $\boldsymbol{q}' \in \mathcal{H}'$ such that $c(\boldsymbol{q}') = \delta_A(\boldsymbol{q}')$.

Note that $\sqrt{-1}$ does not lie in the real closed field fixed by *I*. Therefore, the restriction I_0 of *I* to an element of $G_{\mathbb{Q}}$ is not trivial. Since all involutions in $G_{\mathbb{Q}}$

are conjugate, there is $\alpha \in G_{\mathbb{Q}}$ such that $\alpha^{-1}I_0\alpha$ equals the restriction of c to $\overline{\mathbb{Q}}$. Set $\boldsymbol{q} = \alpha(\boldsymbol{q}')$. Since δ_A is defined over \mathbb{Q} we have

$$I(\boldsymbol{q}) = I_0(\boldsymbol{q}) = I_0\alpha(\boldsymbol{q}') = \alpha c(\boldsymbol{q}') = \alpha \delta_A(\boldsymbol{q}') = \delta_A\alpha(\boldsymbol{q}') = \delta_A(\boldsymbol{q}) = \hat{\beta}(I)(\boldsymbol{q}),$$

as desired.

We thank M. Jarden and D. Haran for their contributions to the following lemma.

LEMMA 3: Let $f: E \to C$ be a surjection of finite groups. Let Z be a set of involutions of C such that every $z \in Z$ lifts to an involution of E. Then there exists a surjection $g: A \to E$ of finite groups with the following properties: Every automorphism γ of C with $\gamma(Z) = Z$ lifts to an automorphism α of A (i.e., $f \circ g \circ \alpha = \gamma \circ f \circ g$). Further, every $z \in Z$ lifts to an involution in A.

Proof: Let \mathcal{F}_0 be a free group with a system of generators that are in 1-1 correspondence with the elements of E, and let $\mathcal{F}_0 \to E$ be the extension of the given map on the generators. Let \mathcal{F} be the free product of \mathcal{F}_0 and a number of groups $\langle y_i \rangle$ of order 2, one for each element of Z. Extend the above map to a map $\mathcal{F} \to E$ sending the y_i to involutions of E that lie over the corresponding elements of Z.

Let \mathcal{N} be the intersection of all normal subgroups N of \mathcal{F} with $\mathcal{F}/N \cong E$. Then $A \stackrel{\text{def}}{=} \mathcal{F}/\mathcal{N}$ is a finite group, and the map $\mathcal{F} \to E$ induces a surjection $g: A \to E$. Every automorphism γ of C with $\gamma(Z) = Z$ is induced from an automorphism of \mathcal{F} (permuting the generators). This automorphism fixes \mathcal{N} , hence induces an automorphism α of A. Clearly α lifts γ . Also, since every $z \in Z$ lifts to an involution of \mathcal{F} , it lifts to an involution of A.

THEOREM: Let P be a PRC-field of characteristic 0. Let h: $H \to C$ be a surjection of finite groups, and let $\beta: G_P \to C$ be a surjection such that for every involution I of G_P the element $\beta(I)$ lifts to an element of H of order ≤ 2 . Then: (a) There exists a surjection $\epsilon_0: G_{P(x)} \to H$ with $h\epsilon_0 = \beta_0$, where $\beta_0: G_{P(x)} \to C$ is the composition of β with restriction $G_{P(x)} \to G_P$.

(b) If P is Hilbertian there exists a surjection $\epsilon: G_P \to H$ with $h\epsilon = \beta$.

Proof: We prove (b). The same proof works for (a) if we replace β by β_0 , G_P by $G_{P(x)}$ and use part (a) of Proposition 1 instead of part (b).

Let Z be the set of involutions of C that lift to involutions of G_P . By [HJ1, Cor. 6.2] there is a surjection $\lambda \colon \tilde{C} \to C$ of finite groups such that the involutions of $\tilde{C} \sim \ker(\lambda)$ are mapped onto Z by λ . Set

$$E = \{(a, b) \in H \times \overline{C}: h(a) = \lambda(b)\}$$

(the fiber product of H and \tilde{C} over C). Let $\pi: E \to H$, $\tilde{\pi}: E \to \tilde{C}$ be the projections. Consider the surjection $f = h \circ \pi = \lambda \circ \tilde{\pi}: E \to C$. Clearly, each $z \in Z$ lifts to an involution of E. Thus we can choose a surjection $g: A \to E$ with the properties from Lemma 3.

Now suppose P is Hilbertian. It follows from Proposition 1(b) that there is a surjection $\theta: G_P \to A$ with $\ker(f \circ g \circ \theta) = \ker(\beta)$. Thus $\gamma \circ f \circ g \circ \theta = \beta$ for some automorphism γ of C. Now fix some $z \in Z$. There is an involution $\nu \in G_P$ with $z = \beta(\nu)$. Since $\beta = \gamma \circ f \circ g \circ \theta$, we have $z = \gamma(z')$, where $z' = f \circ g \circ \theta(\nu)$. Now

$$z' = f \circ g \circ heta(
u) = \lambda \circ ilde{\pi} \circ g \circ heta(
u) = \lambda(ilde{z})$$

where $\tilde{z} = \tilde{\pi} \circ g \circ \theta(\nu)$ is an involution of $\tilde{C} \setminus \ker(\lambda)$ (since $z' \neq 1$). Thus $z' = \lambda(\tilde{z}) \in Z$ by the choice of λ . We have shown that $z' = \gamma^{-1}(z)$ lies in Z for every $z \in Z$. Thus $\gamma(Z) = Z$.

By choice of A, we can lift γ to an automorphism α of A. Then $\epsilon \stackrel{\text{def}}{=} \pi \circ g \circ \alpha \circ \theta$ is a surjection $G_P \to H$ with $h\epsilon = h \circ \pi \circ g \circ \alpha \circ \theta = f \circ g \circ \alpha \circ \theta = \gamma \circ f \circ g \circ \theta = \beta$, as desired.

The theorem suggests the following definition. Let \mathcal{G} be a profinite group. We say that all **restricted finite embedding problems** for \mathcal{G} are solvable if the following holds: For each surjection $h: H \to C$ of finite groups, and for each surjection $\beta: \mathcal{G} \to C$ such that for every involution I of \mathcal{G} the element $\beta(I)$ lifts to an element of H of order ≤ 2 there exists a surjection $\epsilon: \mathcal{G} \to H$ with $h\epsilon = \beta$.

Now we show that among groups of countable rank, this condition characterizes the real-free groups \mathcal{G} (in the sense of [HJ2]). This generalizes Iwasawa's result: Solvability of all finite embedding problems for a profinite group of countable rank forces the group to be free. More precisely, the group is isomorphic to the free profinite group \hat{F}_{ω} of countably infinite rank [FrJ, Cor. 24.2].

For each profinite group \mathcal{G} , let $\Delta(\mathcal{G})$ be the set of conjugacy classes of elements of \mathcal{G} of order ≤ 2 . Endow $\Delta(\mathcal{G})$ with the topology as a quotient of the (closed) set of elements of order ≤ 2 . We view $\Delta(G)$ as a pointed topological space, where the trivial class $\{1\}$ is the distinguished element. PROPOSITION 2: Suppose \mathcal{G} and \mathcal{H} are profinite groups of countable rank for which all restricted finite embedding problems are solvable. If $\Delta(\mathcal{G})$ and $\Delta(\mathcal{H})$ are homeomorphic as pointed topological spaces, then \mathcal{G} and \mathcal{H} are isomorphic.

Proof: Fix a homeomorphism between $\Delta(\mathcal{G})$ and $\Delta(\mathcal{H})$ under which the trivial class of $\Delta(\mathcal{G})$ corresponds to that of $\Delta(\mathcal{H})$. Use this homeomorphism to identify the two spaces. Set $\Delta = \Delta(\mathcal{G}) = \Delta(\mathcal{H})$.

The condition of countable rank yields sequences of open normal subgroups of \mathcal{G} and \mathcal{H} , respectively,

$$\mathcal{G} = \mathcal{N}^{(0)} > \mathcal{N}^{(1)} > \mathcal{N}^{(2)} > \cdots$$
$$\mathcal{H} = \mathcal{M}^{(0)} > \mathcal{M}^{(1)} > \mathcal{M}^{(2)} > \cdots$$

with trivial intersection.

We now construct further such sequences

$$\mathcal{G} = \mathcal{N}_0 > \mathcal{N}_1 > N_2 > \cdots$$

 $\mathcal{H} = \mathcal{M}_0 > \mathcal{M}_1 > \mathcal{M}_2 > \cdots$

with the following additional properties.

- (1) There are isomorphisms $\kappa_i: \mathcal{G}/\mathcal{N}_i \to \mathcal{H}/\mathcal{M}_i$, compatible in the sense that κ_i composed with the natural map $\mathcal{H}/\mathcal{M}_i \to \mathcal{H}/\mathcal{M}_{i-1}$ is the same as the composition of $\mathcal{G}/\mathcal{N}_i \to \mathcal{G}/\mathcal{N}_{i-1}$ with κ_{i-1} .
- (2) For each $\delta \in \Delta$, the images of δ in $\Delta(\mathcal{G}/\mathcal{N}_i)$ and in $\Delta(\mathcal{H}/\mathcal{M}_i)$ correspond under κ_i .

We construct the κ_i inductively, starting with the trivial case i = 0. Now assume i > 0, and everything has been constructed up to the index i - 1, satisfying (1) and (2). If i is even, proceed as follows; if i is odd, interchange the roles of \mathcal{G} and \mathcal{H} . (This is the usual trick in showing that free profinite groups are characterized by the solvability of embedding problems, cf. [FrJ, Lemma 24.1]).

Choose \mathcal{M}_i to be any open normal subgroup of \mathcal{H} contained in $\mathcal{M}^{(i)}$ and in \mathcal{M}_{i-1} . Since the open normal subgroups \mathcal{N} of \mathcal{G} form a basis for the neighborhoods of 1, one can choose $\mathcal{N} \subset \mathcal{N}_{i-1}$ such that any two elements of Δ that have the same image in $\Delta(\mathcal{G}/\mathcal{N})$ also have the same image in $\Delta(\mathcal{H}/\mathcal{M}_i)$. Set $\tilde{\mathcal{G}} = \mathcal{G}/\mathcal{N}$ and $\tilde{\mathcal{H}} = \mathcal{H}/\mathcal{M}_i$.

Now consider the fiber product

$$F = \{ (g\mathcal{N}, h\mathcal{M}_i) \in \bar{\mathcal{G}} \times \bar{\mathcal{H}}: \kappa_{i-1}(g\mathcal{N}_{i-1}) = h\mathcal{M}_{i-1} \}$$

Let $\pi_1: F \to \overline{\mathcal{G}}$ and $\pi_2: F \to \overline{\mathcal{H}}$ be the projections. By [HJ1, Cor. 6.2] there exists a finite group E and a surjection $\lambda: E \to F$ such that the involutions of $E \setminus \ker(\lambda)$ are mapped onto those involutions $(g\mathcal{N}, h\mathcal{M}_i)$ of F for which $g \in \mathcal{G}$ and $h \in \mathcal{H}$ correspond to the same element of Δ .

The canonical map $\mathcal{G} \to \overline{\mathcal{G}}$ and the map $\pi_1 \lambda: E \to \overline{\mathcal{G}}$ make a restricted embedding problem for \mathcal{G} . Namely, by (2), for each involution g of \mathcal{G} there is an involution $h \in \mathcal{H}$ with $\kappa_{i-1}(g\mathcal{N}_{i-1}) = h\mathcal{M}_{i-1}$, such that g and h correspond to the same element of Δ . Thus if $g\mathcal{N} \neq 1$ then $g\mathcal{N}$ lifts to the involution $(g\mathcal{N}, h\mathcal{M}_i)$ of F, and this involution lifts to an involution of E (by the choice of E). The condition of a restricted embedding problem is fulfilled. Let $\chi: \mathcal{G} \to E$ be a solution of this embedding problem (i.e., $\pi_1 \lambda \chi$ is the canonical map $\mathcal{G} \to \overline{\mathcal{G}}$).

Finally let \mathcal{N}_i be the kernel of the surjection $\pi_2 \lambda \chi: \mathcal{G} \to \mathcal{H}$. Let $\kappa_i: \mathcal{G}/\mathcal{N}_i \to \mathcal{H} = \mathcal{H}/\mathcal{M}_i$ be the induced isomorphism. The validity of (1) is then clear by construction. For (2), consider $\delta \in \Delta$, represented by the involution $g \in \mathcal{G}$.

If $\lambda\chi(g) \neq 1$, then $\chi(g)$ is an involution of $E \setminus \ker(\lambda)$. Hence $\lambda\chi(g)$ is of the form $(g'\mathcal{N}, h\mathcal{M}_i)$ where $g' \in \mathcal{G}$ and $h \in \mathcal{H}$ correspond to the same element δ' of Δ . Since $\pi_1\lambda\chi$ is the canonical map $\mathcal{G} \to \overline{\mathcal{G}}$, we have $g'\mathcal{N} = g\mathcal{N}$. This implies that δ and δ' have the same image in $\Delta(\mathcal{H}/\mathcal{M}_i)$ (by the choice of \mathcal{N}). We have $\kappa_i(g\mathcal{N}_i) = h\mathcal{M}_i$. Hence the image of δ in $\Delta(\mathcal{G}/\mathcal{N}_i)$ corresponds under κ_i to the image of δ' in $\Delta(\mathcal{H}/\mathcal{M}_i)$. The latter equals the image of δ in $\Delta(\mathcal{H}/\mathcal{M}_i)$ (by the above). This proves (2) in the case $\lambda\chi(g) \neq 1$.

Now assume $\lambda \chi(g) = 1$. Then $\kappa_i(g\mathcal{N}_i) = \pi_2 \lambda \chi(g) = 1$, and $g\mathcal{N} = \pi_1 \lambda \chi(g) = 1$. The former means that δ has trivial image in $\Delta(\mathcal{G}/\mathcal{N}_i)$, and the latter means that δ has trivial image in $\Delta(\mathcal{G}/\mathcal{N})$. Then it also has trivial image in $\Delta(\mathcal{H}/\mathcal{M}_i)$ (by the choice of \mathcal{N}). Thus (2) also holds in the present case. Now we have verified conditions (1) and (2).

If one alternates the roles of \mathcal{G} and \mathcal{H} in each step of the construction, then it is clear that the sequences (\mathcal{N}_i) and (\mathcal{M}_i) both have trivial intersection. (This is because we have required that $\mathcal{M}_i \leq \mathcal{M}^{(i)}$; in the next step one gets $\mathcal{N}_{i+1} \leq \mathcal{N}^{(i+1)}$ etc.). It follows from (1) that the isomorphisms κ_i glue together to an isomorphism from \mathcal{G} to \mathcal{H} . This completes the proof of the Proposition. Remark: Compare the above Proposition with Lemma 3.4 of [HJ3], which considers proper real embedding problems (as opposed to our restricted embedding problems).

From now on we consider only profinite groups \mathcal{G} whose involutions form a closed subset. The absolute Galois group G_K of each field K has this property. (The subgroup of G_K fixing $\sqrt{-1}$ is a neighborhood of the identity that contains no involutions). Let $\Delta_0(\mathcal{G}) \stackrel{\text{def}}{=} \Delta(\mathcal{G}) \setminus \{1\}$ be the set of conjugacy classes of involutions of \mathcal{G} . Since the involutions form a closed set, $\Delta(\mathcal{G})$ has the topology of a disjoint union of $\Delta_0(\mathcal{G})$ and the distinguished point.

Proposition 2 says that for each topological space Δ_0 there is — up to isomorphism — at most one profinite group \mathcal{G} of countable rank with the following properties: $\Delta_0(\mathcal{G}) \cong \Delta_0$, all finite restricted embedding problems for \mathcal{G} are solvable, and the set of involutions of \mathcal{G} is closed. If such \mathcal{G} exists then Δ_0 is a boolean space with countable basis.

Conversely, for each such Δ_0 there is actually a group $\mathcal{G} = \mathcal{G}(\Delta_0)$ with the above properties. This is a real-free group in the sense of [HJ2]. It can be constructed as follows (see [HJ2]): Take a group freely generated (in the category of profinite groups) by a set of involutions homeomorphic to Δ_0 . Form the free product of this group with \hat{F}_{ω} (see above). This yields the group $\mathcal{G}(\Delta_0)$.

For a field P, let Y(P) be the set of orderings of P. The Harrison topology on Y(P) has a subbasis of clopen sets of the form H_a , $a \in P^*$, where H_a is the set of all orderings for which a is positive. The spaces Y(P) and $\Delta_0(G_P)$ are naturally homeomorphic, via the map that associates with a class of involutions $I \in G_P$ the ordering of P induced by the unique ordering of the fixed field of I[H, p. 399].

If P is countable, its absolute Galois group has countable rank [FJ, Ex. 15.13]. Combine this with the above remarks, with Proposition 2 and our main theorem to obtain the following.

COROLLARY 1: If P is a countable Hilbertian PRC-field, then the absolute Galois group G_P is isomorphic to the real-free group $\mathcal{G}(Y(P))$. Here Y(P) is the topological space of orderings of P. Thus G_P is isomorphic to the free product (in the category of profinite groups) of \hat{F}_{ω} with a group that is freely generated by a set of involutions homeomorphic to Y(P).

COROLLARY 2: Let P be a finite proper extension of the field \mathbb{Q}_{re} of all totally

real algebraic numbers. Then the absolute Galois group G_P is real-free. If P has no ordering then G_P is isomorphic to \hat{F}_{ω} . Otherwise G_P is isomorphic to $\mathcal{G}(X_{\omega})$, with X_{ω} the Cantor set. Thus only two isomorphism types occur among the G_P .

Proof: By the Introduction, P is countable, Hilbertian and PRC. Thus $G_P \cong \mathcal{G}(Y(P))$ by Corollary 1. If P has no ordering then Y(P) is empty, hence $G_P \cong \hat{F}_{\omega}$. It remains to show that $Y(P) \cong X_{\omega}$ in all other cases. This is done in the following Remark, which is due to M. Jarden.

Remark — M. Jarden: Proper real extensions of \mathbb{Q}_{re} . Let P be a finite proper extension of \mathbb{Q}_{re} that has at least one ordering. There is a number field L with $L\mathbb{Q}_{re} = P$. Let $K = L \cap \mathbb{Q}_{re}$. Then L has a finite positive number of orderings. Let L_1 be a finite extension of L contained in P, and let $K_1 = L_1 \cap \mathbb{Q}_{re}$. Then L is linearly disjoint from K_1 over K. As K_1 is totally real, each embedding of K into the reals extends to $[K_1 : K]$ embeddings of K_1 into the reals. Therefore, each ordering of K extends to $[K_1 : K]$ orderings of K_1 . Since L is linearly disjoint from K_1 over K, each pair of orderings of L and of K_1 which coincide on K has a unique extension to L_1 [Ja; p. 241]. Since the space of orderings of P is the projective limit of the space of orderings of all those L_1 's, it is isomorphic to the Cantor set X_{ω} (see [HJ3]).

References

- [DeFr] P. Debes and M. Fried, Rigidity and real residue class fields, Acta Arithmetica 56 (1990), 13-45.
- [FrJ] M. Fried and M. Jarden, Field Arithmetic, Ergebnisse der Mathematik III, 11, Springer, Berlin, 1986.
- [FV1] M. Fried and H. Völklein, The inverse Galois problem and rational points on moduli spaces, Math. Annalen 290 (1991), 771-800.
- [FV2] M. Fried and H. Völklein, The embedding problem over a Hilbertian PAC-field, Annals of Mathematics 135 (1992), 469–481.
- [H] D. Haran, Closed subgroups of $G(\mathbb{Q})$ with involutions, Journal of Algebra 129 (1990), 393-411.
- [HJ1] D. Haran and M. Jarden, The absolute Galois group of a pseudo-real-closed field, Ann. Scuola Norm. Sup. Pisa 12 (1985), 449–489.
- [HJ2] D. Haran and M. Jarden, Real-free groups and the absolute Galois group of $\mathbb{R}(t)$, Journal of Pure and Applied Mathematics 37 (1986), 155–165.

Vol. 85, 1994

- [HJ3] D. Haran and M. Jarden, The absolute Galois group of a pseudo real closed algebraic field, Pacific J. Math. 123 (1986), 55-69.
- [Hu] B. Huppert, Endliche Gruppen I, Die Grundlehren der mathematischen Wissenschaften 134, Springer, Berlin, 1967.
- [Iw] K. Iwasawa, On solvable extensions of algebraic number fields, Annals of Math. 58 (1953), 548–572.
- [Ja] M. Jarden, The elementary theory of large e-fold ordered fields, Acta Math. 149 (1982), 239-260.
- [P] F. Pop, Fields of totally Σ -adic numbers, preprint 1991.
- [Pr] A. Prestel, Pseudo real closed fields, in Set Theory and Model Theory, Lecture Notes in Mathematics 872, Springer, Berlin, 1981.
- [Se1] J.-P. Serre, Cohomologie Galoisienne, Lecure Notes in Mathematics 5, Springer, Berlin, 1964.
- [Se2] J.-P. Serre, Topics in Galois Theory, Jones and Bartlett, Boston, 1992.
- [Ws] R. Weissauer, Der Hilbertsche Irreduzibilitätssatz, Journal für die reine und angewandte Mathematik **334** (1982), 203–220.